
2026/02/16 18:59 1/8 c

Natrius - https://www.natrius.eu/dokuwiki/

C

Zusammenfassung für nützliche Sachen beim Programmieren mit C.

Ressourcen

https://de.wikibooks.org/wiki/C-Programmierung
http://www.code-in-c.com/galton-board-in-c/
http://www.c-howto.de/tutorial/einfuehrung/

Input seperated with space or /

https://stackoverflow.com/questions/15330047/understanding-scanf-dealing-with-formatted-inp
ut

To match both the space-separated and the slash-separated inputs, you'll need a modestly complex
format string:

if (scanf("%[^ /]%*1[/]%d%*1[/]%f", name, &age, &wage) == 3)
 ...data was read properly...
else
 ...something went wrong...

The first conversion specification is a scan set that accepts a sequence of non-blanks, non-slashes (so
it will stop at the first blank or slash). It would be best to specify an upper bound on how many
characters will be accepted so as to avoid stack overflow; for example, if char name[32];, then %31[^
/] (note the off-by-one). The second conversion specification %1[/] accepts a single character (1) that
is either a blank or slash [/], and does not assign it to any variable (). The third conversion
specification is a standard numeric input, skipping leading blanks, allowing for negative numbers to
be entered, etc. The fourth conversion specification is the same as the second, and the fifth is a
standard format for a float (which means that 34000.25 with 7 significant digits is at the outer end of
the range of representable values).

Note that the 'something went wrong' part has a difficult time reporting the error coherently to the
user. This is why many people, myself included, recommend against using scanf() or fscanf() and
prefer to use fgets() or perhaps POSIX getline to read a line from the user and then use sscanf() to
analyze it. You can report the problems much more easily. Also note that the return value from
scanf() is the number of successful assignments; it does not count the conversion specifications that
include *.

Datentypen
Type Keyword Bytes Range
character char 1 -128 .. 127
unsigned character unsigned char 1 0 .. 255

https://de.wikibooks.org/wiki/C-Programmierung
http://www.code-in-c.com/galton-board-in-c/
http://www.c-howto.de/tutorial/einfuehrung/
https://stackoverflow.com/questions/15330047/understanding-scanf-dealing-with-formatted-input
https://stackoverflow.com/questions/15330047/understanding-scanf-dealing-with-formatted-input

Last update: 2019/01/08
17:45 digital:programmieren:c https://www.natrius.eu/dokuwiki/doku.php?id=digital:programmieren:c&rev=1546965949

https://www.natrius.eu/dokuwiki/ Printed on 2026/02/16 18:59

integer int 2 -32 768 .. 32 767
short integer short 2 -32 768 .. 32 767
long integer long 4 -2 147 483 648 .. 2 147 483 647
unsigned integer unsigned int 2 0 .. 65 535
unsigned short integer unsigned short 2 0 .. 65 535
unsigned long integer unsigned long 4 0 .. 4 294 967 295
single-precision floating-point (7 Stellen) float 4 1.17E-38 .. 3.4E38
double-precision floating-point (19 Stellen) double 8 2.2E-308 .. 1.8E308

Zusammenfassung Tutorial

Bit, Byte

1 Byte = 8 Bit
100 MB (MegaBit) = 12,5 Megabyte (Mb)

Datentypen bei Deklaration

char, int, float, double
char = einzelne Zeichen, keine Zahlen
int = Ganzzahlen
float, double = Kommazahlen

Variablen am besten immer gleich mit Werten deklarieren, damit keine Zufallswerte verwendet
werden. int iZahl=0;

Konstanten

Der Compiler bringt eine Warnung, wenn die Variable noch einmal zugewiesen wird. const int
raeder = 4;

Variablenbenennung

Der Name darf nur aus Buchstaben, Ziffern und dem Unterstrich _ bestehen.
Das erste Zeichen muss ein Buchstabe oder der Unterstrich _ sein.
Groß- und Kleinschreibung ist relevant, d.h. „zahl“ und „Zahl“ ist nicht dasselbe.
Der Name darf kein Schlüsselwort sein.

Üblicherweise mit Kleinschreibung beginnen und Worttrennung über Großschreibung realisieren.
CamelCase

Inkrement

int a, b=0;

2026/02/16 18:59 3/8 c

Natrius - https://www.natrius.eu/dokuwiki/

 // Erst Zuweisung, dann Inkrement, a ist 0, b ist 1
 a = b++;
 // Erst Inkrement, dann Zuweisung, a ist 2, b ist 2
 a = ++b;

Ein- Ausgabe

Was rein geht, geht auch raus.

Variablen einlesen

float variable=32.5;

Ausgabe

printf("Laenge: %5.2f", variable);

Integer kann mit double ausgegeben werden. Kommazahlen sind auch möglich.

Zeichen einlesen

Einzelnes Zeichen

c = getchar();

Zahlen einlesen

scanf("%d",&alter);

Double in, double out. Mit %d werden Ganzzahlen eingelesen, mit %f Kommazahlen. Alle Eingaben
inklusive dem Enter kommen in den Puffer. Um das Enter abzufangen, könnte das enter in eine
Variable &temp abgefangen werden.

Verzweigungen

If Else

 int zahl=6;
 if(zahl==5) {
 printf("fuenf\n");
 }else {
 if(zahl==6) {
 printf("sechs\n");

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

Last update: 2019/01/08
17:45 digital:programmieren:c https://www.natrius.eu/dokuwiki/doku.php?id=digital:programmieren:c&rev=1546965949

https://www.natrius.eu/dokuwiki/ Printed on 2026/02/16 18:59

 }else {
 printf("nicht fuenf und nicht sechs\n");
 }
 }

Kurzfassung

Kommt nur eine Anweisung in den if Block, so könnte man auch die geschweiften Klammern
weglassen.

 int zahl=6;
 if(zahl==5) printf("fuenf\n");
 else if(zahl==6) printf("sechs\n");
 else printf("nicht fuenf und nicht sechs\n");

Vergleichoperatoren

== Ist gleich
!= Ist nicht gleich
> Größer
>= Größer gleich
< Kleiner
<= Kleiner gleich

Logische Operatoren

 ! Negation
 && UND
 !! ODER

Switch case

 switch(a){
 case 1: printf("Bla");break;
 case 2: printf("bla2");break;
 }

While Schleife

while(bedingung i < 1000){
 printf("Bla");
 i++;
 }

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

2026/02/16 18:59 5/8 c

Natrius - https://www.natrius.eu/dokuwiki/

For Schleife

int i;

 for(i=0; i<5; i++) {
 printf("Zahl %d\n", i+1);
 }

Do while

int alter;

 do {
 printf("\nBitte geben sie ihr Alter ein: ");
 scanf("%d", &alter);
 } while(alter < 5 || alter > 100);

 printf("Danke.\n");

Funktionen

Die Funktion muss vor dem Main positioniert werden, damit sie dann in der Main aufgerufen werden
kann.

#include<stdio.h>

int addiere(int summand1, int summand2) {
 return (summand1 + summand2);
}

int main() {
 int summe = addiere(3, 7);
 printf("Summe von 3 und 7 ist %d\n", summe);
 return 0;
}

Funktionsprototypen

Diese kommen vor das Hauptprogramm, wobei der Funktionskörper dann an einer beliebigen Stelle
im Script sein darf.

#include<stdio.h>

// Funktions-Prototypen
float eingabeZahl();
float multipliziere(float zahl1, float zahl2);

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/scanf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

Last update: 2019/01/08
17:45 digital:programmieren:c https://www.natrius.eu/dokuwiki/doku.php?id=digital:programmieren:c&rev=1546965949

https://www.natrius.eu/dokuwiki/ Printed on 2026/02/16 18:59

void ausgabeErgebnis(float ergebnis);

// Hauptprogramm
int main() {

Arrays

Arrays sind einzeilige Matrixen um viele Daten speichern zu können. Zugegriffen wird auf die
einzelnen Werte mit dem Index.

Schleifen

Setzen von Werten mit Benutzereingabe

int punkte[5], i;
// Werte einlesen
for(i=0; i<5; i++) {
 printf("\nBitte geben sie eine Punktzahl ein (ganze Zahl): ");
 scanf("%d", &punkte[i]);
}

// Werte auslesen
for(i=0; i<5; i++) {
 printf("(Index %d) Punktzahl Aufgabe %d: %d\n", i, i+1, punkte[i]);
}

Initialisierung

Dazu die Werte eines Feldes einfach in geschweifte Klammern schreiben. Ist die Anzahl der Werte
kleiner als die Feldgröße, werden die restlichen Werte auf 0 gesetzt. Ohne Größenangabe wird das
Array die Größe durch die Anzahl der Initialisierungswerte bestimmt.

int i, punkte[5] = { 1, 3, 5, 7, 9 };

// Werte ausgeben
for(i=0; i<5; i++) {
 printf("Wert Index %d: %d\n", i, punkte[i]);
}

Zweidimensionale Felder

 int brett[8][8];

Für eine bessere Vorstellung kann man von

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/scanf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

2026/02/16 18:59 7/8 c

Natrius - https://www.natrius.eu/dokuwiki/

int brett[y][y];

annehmen, nicht wie gewohnt XY!

Initialisierung

Die Initialisierung zweidimensionaler Felder erfolgt nach unserer Definition der Achsen spaltenweise.

Mehrdimensionale Felder

Der Dimension sind keine Grenzen gesetzt, ein 3D Feld könnte wie folgt initialisiert werden

int cube[2][2][2];

Zeigerarithmetik

Der Zugriff erfolgt mittels Zeigern. Der Zugriff mit [] ist nur eine Möglichkeit, durch die im Hintergrund
Zeiger verwendet werden.

Positionszeiger

Ein Positionszeiger kann immer auf einen bestimmten Wert im Array zeigen. Die Adresse des ersten
Elements erhalten wir durch den bloßen Feldnamen.

int punkte[10] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

// Positionszeiger
int *pos;

// Position auf erstes Element setzen (punkte[0])
pos = punkte;
printf("(punkte[0]) Wert pos: %d\n", *pos);

// Position auf naechstes Element setzen (punkte[1])
pos++;
printf("(punkte[1]) Wert pos: %d\n", *pos);

// Position auf 5. Element setzen (punkte[4])
pos = punkte + 4;
printf("(punkte[4]) Wert pos: %d\n", *pos);

// Position auf vorheriges Element setzen (punkte[3])
pos--;
printf("(punkte[3]) Wert pos: %d\n", *pos);

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

Last update: 2019/01/08
17:45 digital:programmieren:c https://www.natrius.eu/dokuwiki/doku.php?id=digital:programmieren:c&rev=1546965949

https://www.natrius.eu/dokuwiki/ Printed on 2026/02/16 18:59

ermittlung der Index-Nummer

int punkte[10] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

// Positionszeiger, Setzen auf 6.Element
int *pos = punkte + 5;

// Index berechnen
int index = pos - punkte;

printf("Index: %d\n", index);
printf("Wert pos / punkte[index]: %d\n", punkte[index]);

Mehrdimensional

// Array und Spaltengrenze setzen
int brett[8][8]={ 0 }, Y_Max=8;

// Startposition
int *posStart = &brett[0][0];

// Testwert setzen
brett[2][4] = 7;

// Beschaffung Testwert mit Zeigerarithmetik
int *pos;
pos = posStart + (y * Y_Max) + x;

printf("%d\n", *pos);

Die entscheidende Programmzeile ist die, in der der Positionszeiger pos gesetzt wird. Seine Basis ist
die Startadresse des Arrays. Benötigt wird der Wert in Zeile 2 und Spalte 4, Index [2][4]. Um dorthin
zu kommen, müssen wir uns erst zeilenweise und dann spaltenweise vorarbeiten. Also setzen wir den
Zeiger auf das erste Element in Zeile 2. Eine Zeile hat 8 Spalten-Elemente, also müssen wir den
Zeiger 2 * 8 Elemente weiterrutschen. Zum Schluss addieren wir noch die 4, um in die vierte Spalte zu
springen.

From:
https://www.natrius.eu/dokuwiki/ - Natrius

Permanent link:
https://www.natrius.eu/dokuwiki/doku.php?id=digital:programmieren:c&rev=1546965949

Last update: 2019/01/08 17:45

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
https://www.natrius.eu/dokuwiki/
https://www.natrius.eu/dokuwiki/doku.php?id=digital:programmieren:c&rev=1546965949

	C
	Ressourcen
	Input seperated with space or /
	Datentypen
	Zusammenfassung Tutorial
	Bit, Byte
	Datentypen bei Deklaration
	Konstanten
	Variablenbenennung
	Inkrement
	Ein- Ausgabe
	Variablen einlesen

	Zeichen einlesen
	Einzelnes Zeichen

	Verzweigungen
	If Else
	Kurzfassung

	Vergleichoperatoren
	Logische Operatoren
	Switch case
	While Schleife
	For Schleife
	Do while

	Funktionen
	Funktionsprototypen
	Arrays
	Schleifen
	Initialisierung
	Zweidimensionale Felder
	Initialisierung

	Mehrdimensionale Felder
	Zeigerarithmetik
	Positionszeiger
	ermittlung der Index-Nummer
	Mehrdimensional

